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Abstract: In recent years the state of art semiconductor technology has motivated engineers across 

the globe to design devices having dimensions in nanoscale regime. At this scale minima, the 

transport within the device is dominated by quantum mechanics. This paper reviews threeimportant 

variants of Non-equilibrium Green’s Function (NEGF) used for modellingquantum transport within 

nanostructures. 

 

I. Introduction: 
Basic quantum transport mechanism can be classified as (i) dissipative transport (ii) ballistic 

transport (Ldevicefree) and (iii) tunneling transport (Ldevice<<free). 

Number of methods have been suggested in past decade to explain the quantum transport 

mechanism.  Among the most commonly used formulizing schemes are the Wigner-function 

approach, the Pauli master equation, and the non-equilibrium Green's functions (NEGF).In order to 

study the extremely scaled MOSFET devices it is essential to know quantum transport modelling so 

as to address design issues and electrical characterization. Three basic methods of quantum transport 

namely Non equilibrium Green‟s function formalism, recursive Green‟s function algorithm and Gu 

method are compared in this review work based on Mat lab simulations of these formalism.[1-8] 

 

II. Non-equilibrium Green Function: Traditional Method 
The non-equilibrium Green‟s function formalism (NEGF) provides a rigorous description of 

quantum transport in nanoscale devices. The method is composed of two main blocks, Poisson‟s 

equation solver and the quantum transport solver which is based on the NEGF formalism. Poisson‟s 

equation gives the electrostatic potential distribution (V) with in the nano structure for a given 

electron density (n) and hole density (p). The NEGF solver gives the n and p density and the electrical 

current (I) for an applied potential V. The self-consistent method starts by assuming initial value for 

the potential which is fed to the NEGF solver to calculate the n and p densities. The calculated 

densities are fed to Poisson‟s solver to find the updated potential V in the nano-structure. The 

equations are solved using looping construct between Poisson‟s solver and NEGF solver until the 

update in the potential drops below certain tolerance, after which the terminal currents are estimated. 

The device geometry of the double gate MOSFET under consideration is shown in the figure 1 

.Following assumptions have been made during simulation [3-8][11-20] 

 

 
     Figure-1 
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(1) height („Y‟-Coordinate) of the Fin FET is much larger compared to the width (Z- coordinate) 

(Figure 1) so that it is reasonable to assume that carriers are not confined along Y direction and 

solution of the Schrodinger Equation  can be represented by simple plane waves and, 

(2) the device can be viewed as a combination of parallel identical slices along the Y direction. 

(3) The metal contacts are so large such that thermal equilibrium is maintained and the Fermi level in 

these regions is determined by the applied voltage.  

(4) N-channel transistor where holes contribution, to both the transport and the electrostatic problems, 

can be neglected.  

(5)  No electron penetration in the insulator region.[2][4] 

A single band effective mass Hamiltonian [16] is used to model the electron transport. The 2D wave 

function ),( yx is obtained from the solution of the 2D Schrödinger equation:
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Where xm*
and ym*

=electron effective mass in x and y-direction respectively. Ec is the conduction 

band edge and El is the longitudinal energy due to motion in x- and y-direction respectively.[5] 

The equation representation using Hamiltonian matrix is  

  }]{[}]{[}{1  IEEH lC       ------------------------------

 (2) 

 

Where each of these terms in matrix form are as  
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Using self-energy concept within NEGF framework and considering only active area within the 

device with boundary conditions and including source and drain self- energy expressions as  source  

and  Drain respectively;Non-equilibrium Green equation for an active device is written as  

 


])([

1

DrainsourceCll EHIE
G    -------------------------------------- (3) 

Values of  source and  Drain  are 
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Where sg and Dg are surface Green‟s functions of the source and drain contacts respectively. 

The carrier transport is represented by the broadening function at source and drain terminals 

representing  

    SSS i and     DDD i                         --------------------------------------(5)  

By considering spectral function ,quantum transport phenomena representation at source and 

drain terminals can be summed a 

 GGA SS and
 GGA DD      ----------------------------(6) 

Considering Fermi equation, Fermi levels of source and drain are evaluated with correlation function  

),()(),()()( fDlDfSlSl
n EEFEAEEFEAEG                ----------------------------------- (7) 

The transmission coefficient from the source contact terminal to drain contact is defined in 

terms of Green‟s function and broadening function as 

  GGTraceT DSSD -----------------------------------(8) 

Total electron density and current are estimated by integrating over longitudinal energy lE

and summing over all the conduction band valleys. 

Numerical matrix inversion consumes a large number of operations that in the order of 
3
gridN  

.  Green‟s function is calculated for each energy point considered in the simulation. This makes total 

number of operations on the scale of 
3

int gridsEnergypooperations NNN  . [4-8] 

 

III. The Recursive Green function: 
The computational efforts can easily be minimized by considering device 2D symmetry and 

computing Green function recursively without full inversion of Hamiltonian matrix. It can be used 

only if the effective Hamiltonian matrix is block tri-diagonal. As the nano device has only two 

contacts and there exists coupling between nearest neighboring layers; recursive Green function logic 

is applicable and yields good results without compromising the accuracy. The equations under 

consideration can be summarized as  

][ DSdl HIED  dimension mnD , denotes ]:)1(,:)1[( yyyy mNNmnNNnD   from 

which Non equilibrium Green function is computed using following steps: 
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Assuming only source and drain contacts to be conducting   
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in EEFEEEFEE  the Green function value is calculated for q= 

1,2,..NX-1 using steps as  
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n
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n

qq GG 
  ,11,  The longitudinal energy resolved electron 

density at a grid point I is estimated form diagonal elements .The y direction computation is based on 

inverse Hamiltonian matrix and xN  values correspond to inversion of each vertical energy layer. The 

total number of steps in the computation are thus xysEnergypooperations NNNN 3
int [3-8][10] 

 

IV. The Gauss Estimation Method: 
The method does not consider the entire Green‟s function, but computes spectral coefficients 

for representation based on sparse nature of broadening function. The Non-equilibrium Green‟s 

function carrier transport at drain and source contacts can be expressed in matrix form as  
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Rather than computing current by integrating over entire longitudinal field it is computed for 

discrete values by Green‟s function as  

  SDSllS IHIEG / and   DDSllD IHIEG / ------------ (9) 

 

Due to consideration of discrete values only yyx NXNN 2 are considered. The final transport 

equation is [3][5][7][8][10][18-20] 
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V. Conclusion: 

All the three simulation techniques are simulated using Mat lab In each of the concepts 

applied the number of iterations as well as number of terms get reduced. The approximations made 

due to submicron structural dimensions help to yield results faster without compromising accuracy. 
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